------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties related to All
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

module Data.List.Relation.Unary.All.Properties where

open import Axiom.Extensionality.Propositional using (Extensionality)
open import Data.Bool.Base using (Bool; T; true; false)
open import Data.Bool.Properties using (T-∧)
open import Data.Empty
open import Data.Fin.Base using (Fin) renaming (zero to fzero; suc to fsuc)
open import Data.List.Base as List hiding (lookup)
open import Data.List.Properties as Listₚ using (partition-defn)
open import Data.List.Membership.Propositional
open import Data.List.Membership.Propositional.Properties
import Data.List.Membership.Setoid as SetoidMembership
open import Data.List.Relation.Unary.All as All using
  ( All; []; _∷_; lookup; updateAt
  ; _[_]=_; here; there
  ; Null
  )
open import Data.List.Relation.Unary.Any as Any using (Any; here; there)
import Data.List.Relation.Binary.Equality.Setoid as ListEq using (_≋_; []; _∷_)
open import Data.List.Relation.Binary.Pointwise using (Pointwise; []; _∷_)
open import Data.List.Relation.Binary.Subset.Propositional using (_⊆_)
open import Data.Maybe.Base as Maybe using (Maybe; just; nothing)
open import Data.Maybe.Relation.Unary.All as Maybe using (just; nothing)
open import Data.Nat.Base using (zero; suc; z≤n; s≤s; _<_)
open import Data.Nat.Properties using (≤-refl; ≤-step)
open import Data.Product as Prod using (_×_; _,_; uncurry; uncurry′)
open import Function.Base
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence using (_⇔_; equivalence; Equivalence)
open import Function.Inverse using (_↔_; inverse)
open import Function.Surjection using (_↠_; surjection)
open import Level using (Level)
open import Relation.Binary as B using (REL; Setoid; _Respects_)
open import Relation.Binary.PropositionalEquality
  using (_≡_; refl; cong; cong₂; _≗_)
open import Relation.Nullary.Reflects using (invert)
open import Relation.Nullary
open import Relation.Nullary.Negation using (¬?; contradiction; decidable-stable)
open import Relation.Unary
  using (Decidable; Pred; Universal; ; _∩_; _⟨×⟩_) renaming (_⊆_ to _⋐_)
open import Relation.Unary.Properties using (∁?)

private
  variable
    a b c p q r  ℓ₁ ℓ₂ : Level
    A : Set a
    B : Set b
    C : Set c
    P : Pred A p
    Q : Pred B q
    R : Pred C r
    x y : A
    xs ys : List A

------------------------------------------------------------------------
-- Properties regarding Null

Null⇒null : Null xs  T (null xs)
Null⇒null [] = _

null⇒Null : T (null xs)  Null xs
null⇒Null {xs = []   } _ = []
null⇒Null {xs = _  _} ()

------------------------------------------------------------------------
-- Properties of the "points-to" relation _[_]=_

-- Relation _[_]=_ is deterministic: each index points to a single value.

[]=-injective :  {px qx : P x} {pxs : All P xs} {i : x  xs} 
                pxs [ i ]= px 
                pxs [ i ]= qx 
                px  qx
[]=-injective here          here          = refl
[]=-injective (there x↦px) (there x↦qx) = []=-injective x↦px x↦qx

-- See also Data.List.Relation.Unary.All.Properties.WithK.[]=-irrelevant.

------------------------------------------------------------------------
-- Lemmas relating Any, All and negation.

¬Any⇒All¬ :  xs  ¬ Any P xs  All (¬_  P) xs
¬Any⇒All¬ []       ¬p = []
¬Any⇒All¬ (x  xs) ¬p = ¬p  here  ¬Any⇒All¬ xs (¬p  there)

All¬⇒¬Any :  {xs}  All (¬_  P) xs  ¬ Any P xs
All¬⇒¬Any (¬p  _)  (here  p) = ¬p p
All¬⇒¬Any (_   ¬p) (there p) = All¬⇒¬Any ¬p p

¬All⇒Any¬ : Decidable P   xs  ¬ All P xs  Any (¬_  P) xs
¬All⇒Any¬ dec []       ¬∀ = ⊥-elim (¬∀ [])
¬All⇒Any¬ dec (x  xs) ¬∀ with dec x
... |  true because  [p] = there (¬All⇒Any¬ dec xs (¬∀  _∷_ (invert [p])))
... | false because [¬p] = here (invert [¬p])

Any¬⇒¬All :  {xs}  Any (¬_  P) xs  ¬ All P xs
Any¬⇒¬All (here  ¬p) = ¬p            All.head
Any¬⇒¬All (there ¬p) = Any¬⇒¬All ¬p  All.tail

¬Any↠All¬ :  {xs}  (¬ Any P xs)  All (¬_  P) xs
¬Any↠All¬ = surjection (¬Any⇒All¬ _) All¬⇒¬Any to∘from
  where
  to∘from :  {xs} (¬p : All (¬_  P) xs)  ¬Any⇒All¬ xs (All¬⇒¬Any ¬p)  ¬p
  to∘from []         = refl
  to∘from (¬p  ¬ps) = cong₂ _∷_ refl (to∘from ¬ps)

  -- If equality of functions were extensional, then the surjection
  -- could be strengthened to a bijection.

  from∘to : Extensionality _ _ 
             xs  (¬p : ¬ Any P xs)  All¬⇒¬Any (¬Any⇒All¬ xs ¬p)  ¬p
  from∘to ext []       ¬p = ext λ ()
  from∘to ext (x  xs) ¬p = ext λ
    { (here p)   refl
    ; (there p)  cong  f  f p) $ from∘to ext xs (¬p  there)
    }

Any¬⇔¬All :  {xs}  Decidable P  Any (¬_  P) xs  (¬ All P xs)
Any¬⇔¬All dec = equivalence Any¬⇒¬All (¬All⇒Any¬ dec _)

private
  -- If equality of functions were extensional, then the logical
  -- equivalence could be strengthened to a surjection.
  to∘from : Extensionality _ _  (dec : Decidable P) 
            (¬∀ : ¬ All P xs)  Any¬⇒¬All (¬All⇒Any¬ dec xs ¬∀)  ¬∀
  to∘from ext P ¬∀ = ext (⊥-elim  ¬∀)

module _ {_~_ : REL A B } where

  All-swap :  {xs ys} 
             All  x  All (x ~_) ys) xs 
             All  y  All (_~ y) xs) ys
  All-swap {ys = []}     _   = []
  All-swap {ys = y  ys} []  = All.universal  _  []) (y  ys)
  All-swap {ys = y  ys} ((x~y  x~ys)  pxs) =
    (x~y  (All.map All.head pxs)) 
    All-swap (x~ys  (All.map All.tail pxs))

------------------------------------------------------------------------
-- Defining properties of lookup and _[_]=_
--
-- pxs [ i ]= px  if and only if  lookup pxs i = px.

-- `i` points to `lookup pxs i` in `pxs`.

[]=lookup : (pxs : All P xs) (i : x  xs) 
            pxs [ i ]= lookup pxs i
[]=lookup (px  pxs) (here refl) = here
[]=lookup (px  pxs) (there i)   = there ([]=lookup pxs i)

-- If `i` points to `px` in `pxs`, then `lookup pxs i ≡ px`.

[]=⇒lookup :  {px : P x} {pxs : All P xs} {i : x  xs} 
             pxs [ i ]= px 
             lookup pxs i  px
[]=⇒lookup x↦px = []=-injective ([]=lookup _ _) x↦px

-- If `lookup pxs i ≡ px`, then `i` points to `px` in `pxs`.

lookup⇒[]= :  {px : P x} (pxs : All P xs) (i : x  xs) 
             lookup pxs i  px 
             pxs [ i ]= px
lookup⇒[]= pxs i refl = []=lookup pxs i

------------------------------------------------------------------------
-- Properties of operations over `All`
------------------------------------------------------------------------
-- map

map-id :  (pxs : All P xs)  All.map id pxs  pxs
map-id []         = refl
map-id (px  pxs) = cong (px ∷_)  (map-id pxs)

map-cong :  {f : P  Q} {g : P  Q} (pxs : All P xs) 
           (∀ {x}  f {x}  g)  All.map f pxs  All.map g pxs
map-cong []         _   = refl
map-cong (px  pxs) feq = cong₂ _∷_ (feq px) (map-cong pxs feq)

map-compose :  {f : P  Q} {g : Q  R} (pxs : All P xs) 
              All.map g (All.map f pxs)  All.map (g  f) pxs
map-compose []         = refl
map-compose (px  pxs) = cong (_ ∷_) (map-compose pxs)

lookup-map :  {f : P  Q} (pxs : All P xs) (i : x  xs) 
             lookup (All.map f pxs) i  f (lookup pxs i)
lookup-map (px  pxs) (here refl) = refl
lookup-map (px  pxs) (there i)   = lookup-map pxs i

------------------------------------------------------------------------
-- _[_]%=_ / updateAt

  -- Defining properties of updateAt:

-- (+) updateAt actually updates the element at the given index.

updateAt-updates :  (i : x  xs) {f : P x  P x} {px : P x} (pxs : All P xs) 
                   pxs              [ i ]= px 
                   updateAt i f pxs [ i ]= f px
updateAt-updates (here  refl) (px  pxs) here         = here
updateAt-updates (there i)    (px  pxs) (there x↦px) =
  there (updateAt-updates i pxs x↦px)

-- (-) updateAt i does not touch the elements at other indices.

updateAt-minimal :  (i : x  xs) (j : y  xs) 
                    {f : P y  P y} {px : P x} (pxs : All P xs) 
                   i ≢∈ j 
                   pxs              [ i ]= px 
                   updateAt j f pxs [ i ]= px
updateAt-minimal (here .refl) (here refl) (px  pxs) i≢j here        =
  ⊥-elim (i≢j refl refl)
updateAt-minimal (here .refl) (there j)   (px  pxs) i≢j here        = here
updateAt-minimal (there i)    (here refl) (px  pxs) i≢j (there val) = there val
updateAt-minimal (there i)    (there j)   (px  pxs) i≢j (there val) =
  there (updateAt-minimal i j pxs (there-injective-≢∈ i≢j) val)

-- lookup after updateAt reduces.

-- For same index this is an easy consequence of updateAt-updates
-- using []=↔lookup.

lookup∘updateAt :  (pxs : All P xs) (i : x  xs) {f : P x  P x} 
                  lookup (updateAt i f pxs) i  f (lookup pxs i)
lookup∘updateAt pxs i =
  []=⇒lookup (updateAt-updates i pxs (lookup⇒[]= pxs i refl))

-- For different indices it easily follows from updateAt-minimal.

lookup∘updateAt′ :  (i : x  xs) (j : y  xs) 
                    {f : P y  P y} {px : P x} (pxs : All P xs) 
                   i ≢∈ j 
                   lookup (updateAt j f pxs) i  lookup pxs i
lookup∘updateAt′ i j pxs i≢j =
  []=⇒lookup (updateAt-minimal i j pxs i≢j (lookup⇒[]= pxs i refl))

-- The other properties are consequences of (+) and (-).
-- We spell the most natural properties out.
-- Direct inductive proofs are in most cases easier than just using
-- the defining properties.

-- In the explanations, we make use of shorthand  f = g ↾ x
-- meaning that f and g agree at point x, i.e.  f x ≡ g x.

-- updateAt (i : x ∈ xs)  is a morphism
-- from the monoid of endofunctions  P x → P x
-- to the monoid of endofunctions  All P xs → All P xs.

-- 1a. relative identity:  f = id ↾ (lookup pxs i)
--                implies  updateAt i f = id ↾ pxs

updateAt-id-relative :  (i : x  xs) {f : P x  P x} (pxs : All P xs) 
                       f (lookup pxs i)  lookup pxs i 
                       updateAt i f pxs  pxs
updateAt-id-relative (here refl)(px  pxs) eq = cong (_∷ pxs) eq
updateAt-id-relative (there i)  (px  pxs) eq = cong (px ∷_) (updateAt-id-relative i pxs eq)

-- 1b. identity:  updateAt i id ≗ id

updateAt-id :  (i : x  xs) (pxs : All P xs)  updateAt i id pxs  pxs
updateAt-id i pxs = updateAt-id-relative i pxs refl

-- 2a. relative composition:  f ∘ g = h ↾ (lookup i pxs)
--                   implies  updateAt i f ∘ updateAt i g = updateAt i h ↾ pxs

updateAt-compose-relative :  (i : x  xs) {f g h : P x  P x} (pxs : All P xs) 
                            f (g (lookup pxs i))  h (lookup pxs i) 
                            updateAt i f (updateAt i g pxs)  updateAt i h pxs
updateAt-compose-relative (here refl) (px  pxs) fg=h = cong (_∷ pxs) fg=h
updateAt-compose-relative (there i)   (px  pxs) fg=h =
  cong (px ∷_) (updateAt-compose-relative i pxs fg=h)

-- 2b. composition:  updateAt i f ∘ updateAt i g ≗ updateAt i (f ∘ g)

updateAt-compose :  (i : x  xs) {f g : P x  P x} 
                   updateAt {P = P} i f  updateAt i g  updateAt i (f  g)
updateAt-compose (here refl) (px  pxs) = refl
updateAt-compose (there i)   (px  pxs) = cong (px ∷_) (updateAt-compose i pxs)

-- 3. congruence:  updateAt i  is a congruence wrt. extensional equality.

-- 3a.  If    f = g ↾ (lookup pxs i)
--      then  updateAt i f = updateAt i g ↾ pxs

updateAt-cong-relative :  (i : x  xs) {f g : P x  P x} (pxs : All P xs) 
                         f (lookup pxs i)  g (lookup pxs i) 
                         updateAt i f pxs  updateAt i g pxs
updateAt-cong-relative (here refl) (px  pxs) f=g = cong (_∷ pxs) f=g
updateAt-cong-relative (there i)   (px  pxs) f=g = cong (px ∷_) (updateAt-cong-relative i pxs f=g)

-- 3b. congruence:  f ≗ g → updateAt i f ≗ updateAt i g

updateAt-cong :  (i : x  xs) {f g : P x  P x} 
                f  g  updateAt {P = P} i f  updateAt i g
updateAt-cong i f≗g pxs = updateAt-cong-relative i pxs (f≗g (lookup pxs i))

-- The order of updates at different indices i ≢ j does not matter.

-- This a consequence of updateAt-updates and updateAt-minimal
-- but easier to prove inductively.

updateAt-commutes :  (i : x  xs) (j : y  xs) 
                     {f : P x  P x} {g : P y  P y} 
                    i ≢∈ j 
                    updateAt {P = P} i f  updateAt j g  updateAt j g  updateAt i f
updateAt-commutes (here refl) (here refl) i≢j (px  pxs) =
  ⊥-elim (i≢j refl refl)
updateAt-commutes (here refl) (there j)   i≢j (px  pxs) = refl
updateAt-commutes (there i)   (here refl) i≢j (px  pxs) = refl
updateAt-commutes (there i)   (there j)   i≢j (px  pxs) =
  cong (px ∷_) (updateAt-commutes i j (there-injective-≢∈ i≢j) pxs)

map-updateAt :  {f : P  Q} {g : P x  P x} {h : Q x  Q x}
               (pxs : All P xs) (i : x  xs) 
               f (g (lookup pxs i))  h (f (lookup pxs i)) 
               All.map f (pxs All.[ i ]%= g)  (All.map f pxs) All.[ i ]%= h
map-updateAt (px  pxs) (here refl) = cong (_∷ _)
map-updateAt (px  pxs) (there i) feq = cong (_ ∷_) (map-updateAt pxs i feq)

------------------------------------------------------------------------
-- Introduction (⁺) and elimination (⁻) rules for list operations
------------------------------------------------------------------------
-- singleton

singleton⁻ : All P [ x ]  P x
singleton⁻ (px  []) = px

-- head

head⁺ : All P xs  Maybe.All P (head xs)
head⁺ []       = nothing
head⁺ (px  _) = just px

-- tail

tail⁺ : All P xs  Maybe.All (All P) (tail xs)
tail⁺ []        = nothing
tail⁺ (_  pxs) = just pxs

-- last

last⁺ : All P xs  Maybe.All P (last xs)
last⁺ []                 = nothing
last⁺ (px  [])          = just px
last⁺ (px  pxs@(_  _)) = last⁺ pxs

-- uncons

uncons⁺ : All P xs  Maybe.All (P ⟨×⟩ All P) (uncons xs)
uncons⁺ []         = nothing
uncons⁺ (px  pxs) = just (px , pxs)

uncons⁻ : Maybe.All (P ⟨×⟩ All P) (uncons xs)  All P xs
uncons⁻ {xs = []}     nothing           = []
uncons⁻ {xs = x  xs} (just (px , pxs)) = px  pxs

-- map

map⁺ :  {f : A  B}  All (P  f) xs  All P (map f xs)
map⁺ []       = []
map⁺ (p  ps) = p  map⁺ ps

map⁻ :  {f : A  B}  All P (map f xs)  All (P  f) xs
map⁻ {xs = []}    []       = []
map⁻ {xs = _  _} (p  ps) = p  map⁻ ps

-- A variant of All.map.

gmap :  {f : A  B}  P  Q  f  All P  All Q  map f
gmap g = map⁺  All.map g

------------------------------------------------------------------------
-- mapMaybe

mapMaybe⁺ :  {f : A  Maybe B} 
            All (Maybe.All P) (map f xs)  All P (mapMaybe f xs)
mapMaybe⁺ {xs = []}     {f = f} []         = []
mapMaybe⁺ {xs = x  xs} {f = f} (px  pxs) with f x
... | nothing = mapMaybe⁺ pxs
... | just v with px
...   | just pv = pv  mapMaybe⁺ pxs

------------------------------------------------------------------------
-- _++_

++⁺ : All P xs  All P ys  All P (xs ++ ys)
++⁺ []         pys = pys
++⁺ (px  pxs) pys = px  ++⁺ pxs pys

++⁻ˡ :  xs {ys}  All P (xs ++ ys)  All P xs
++⁻ˡ []       p          = []
++⁻ˡ (x  xs) (px  pxs) = px  (++⁻ˡ _ pxs)

++⁻ʳ :  xs {ys}  All P (xs ++ ys)  All P ys
++⁻ʳ []       p          = p
++⁻ʳ (x  xs) (px  pxs) = ++⁻ʳ xs pxs

++⁻ :  xs {ys}  All P (xs ++ ys)  All P xs × All P ys
++⁻ []       p          = [] , p
++⁻ (x  xs) (px  pxs) = Prod.map (px ∷_) id (++⁻ _ pxs)

++↔ : (All P xs × All P ys)  All P (xs ++ ys)
++↔ {xs = zs} = inverse (uncurry ++⁺) (++⁻ zs) ++⁻∘++⁺ (++⁺∘++⁻ zs)
  where
  ++⁺∘++⁻ :  xs (p : All P (xs ++ ys))  uncurry′ ++⁺ (++⁻ xs p)  p
  ++⁺∘++⁻ []       p          = refl
  ++⁺∘++⁻ (x  xs) (px  pxs) = cong (_∷_ px) $ ++⁺∘++⁻ xs pxs

  ++⁻∘++⁺ :  (p : All P xs × All P ys)  ++⁻ xs (uncurry ++⁺ p)  p
  ++⁻∘++⁺ ([]       , pys) = refl
  ++⁻∘++⁺ (px  pxs , pys) rewrite ++⁻∘++⁺ (pxs , pys) = refl

------------------------------------------------------------------------
-- concat

concat⁺ :  {xss}  All (All P) xss  All P (concat xss)
concat⁺ []           = []
concat⁺ (pxs  pxss) = ++⁺ pxs (concat⁺ pxss)

concat⁻ :  {xss}  All P (concat xss)  All (All P) xss
concat⁻ {xss = []}       []  = []
concat⁻ {xss = xs  xss} pxs = ++⁻ˡ xs pxs  concat⁻ (++⁻ʳ xs pxs)

------------------------------------------------------------------------
-- snoc

∷ʳ⁺ : All P xs  P x  All P (xs ∷ʳ x)
∷ʳ⁺ pxs px = ++⁺ pxs (px  [])

∷ʳ⁻ : All P (xs ∷ʳ x)  All P xs × P x
∷ʳ⁻ pxs = Prod.map₂ singleton⁻ $ ++⁻ _ pxs

-- unsnoc

unsnoc⁺ : All P xs  Maybe.All (All P ⟨×⟩ P) (unsnoc xs)
unsnoc⁺ {xs = xs} pxs with initLast xs
unsnoc⁺ {xs = .[]}        pxs | []       = nothing
unsnoc⁺ {xs = .(xs ∷ʳ x)} pxs | xs ∷ʳ′ x = just (∷ʳ⁻ pxs)

unsnoc⁻ : Maybe.All (All P ⟨×⟩ P) (unsnoc xs)  All P xs
unsnoc⁻ {xs = xs} pxs with initLast xs
unsnoc⁻ {xs = .[]}        nothing           | []       = []
unsnoc⁻ {xs = .(xs ∷ʳ x)} (just (pxs , px)) | xs ∷ʳ′ x = ∷ʳ⁺ pxs px

------------------------------------------------------------------------
-- cartesianProductWith and cartesianProduct

module _ (S₁ : Setoid a ℓ₁) (S₂ : Setoid b ℓ₂) where
  open SetoidMembership S₁ using () renaming (_∈_ to _∈₁_)
  open SetoidMembership S₂ using () renaming (_∈_ to _∈₂_)

  cartesianProductWith⁺ :  f xs ys 
                          (∀ {x y}  x ∈₁ xs  y ∈₂ ys  P (f x y)) 
                          All P (cartesianProductWith f xs ys)
  cartesianProductWith⁺ f []       ys pres = []
  cartesianProductWith⁺ f (x  xs) ys pres = ++⁺
    (map⁺ (All.tabulateₛ S₂ (pres (here (Setoid.refl S₁)))))
    (cartesianProductWith⁺ f xs ys (pres  there))

  cartesianProduct⁺ :  xs ys 
                      (∀ {x y}  x ∈₁ xs  y ∈₂ ys  P (x , y)) 
                      All P (cartesianProduct xs ys)
  cartesianProduct⁺ = cartesianProductWith⁺ _,_

------------------------------------------------------------------------
-- take and drop

drop⁺ :  n  All P xs  All P (drop n xs)
drop⁺ zero    pxs        = pxs
drop⁺ (suc n) []         = []
drop⁺ (suc n) (px  pxs) = drop⁺ n pxs

dropWhile⁺ : (Q? : Decidable Q)  All P xs  All P (dropWhile Q? xs)
dropWhile⁺               Q? []         = []
dropWhile⁺ {xs = x  xs} Q? (px  pxs) with does (Q? x)
... | true  = dropWhile⁺ Q? pxs
... | false = px  pxs

dropWhile⁻ : (P? : Decidable P)  dropWhile P? xs  []  All P xs
dropWhile⁻ {xs = []}     P? eq = []
dropWhile⁻ {xs = x  xs} P? eq with P? x
... | yes px = px  (dropWhile⁻ P? eq)
... | no ¬px = case eq of λ ()

all-head-dropWhile : (P? : Decidable P) 
                      xs  Maybe.All ( P) (head (dropWhile P? xs))
all-head-dropWhile P? []       = nothing
all-head-dropWhile P? (x  xs) with P? x
... | yes px = all-head-dropWhile P? xs
... | no ¬px = just ¬px

take⁺ :  n  All P xs  All P (take n xs)
take⁺ zero    pxs        = []
take⁺ (suc n) []         = []
take⁺ (suc n) (px  pxs) = px  take⁺ n pxs

takeWhile⁺ : (Q? : Decidable Q)  All P xs  All P (takeWhile Q? xs)
takeWhile⁺               Q? []         = []
takeWhile⁺ {xs = x  xs} Q? (px  pxs) with does (Q? x)
... | true  = px  takeWhile⁺ Q? pxs
... | false = []

takeWhile⁻ : (P? : Decidable P)  takeWhile P? xs  xs  All P xs
takeWhile⁻ {xs = []}     P? eq = []
takeWhile⁻ {xs = x  xs} P? eq with P? x
... | yes px = px  takeWhile⁻ P? (Listₚ.∷-injectiveʳ eq)
... | no ¬px = case eq of λ ()

all-takeWhile : (P? : Decidable P)   xs  All P (takeWhile P? xs)
all-takeWhile P? []       = []
all-takeWhile P? (x  xs) with P? x
... | yes px = px  all-takeWhile P? xs
... | no ¬px = []

------------------------------------------------------------------------
-- applyUpTo

applyUpTo⁺₁ :  f n  (∀ {i}  i < n  P (f i))  All P (applyUpTo f n)
applyUpTo⁺₁ f zero    Pf = []
applyUpTo⁺₁ f (suc n) Pf = Pf (s≤s z≤n)  applyUpTo⁺₁ (f  suc) n (Pf  s≤s)

applyUpTo⁺₂ :  f n  (∀ i  P (f i))  All P (applyUpTo f n)
applyUpTo⁺₂ f n Pf = applyUpTo⁺₁ f n  _  Pf _)

applyUpTo⁻ :  f n  All P (applyUpTo f n)   {i}  i < n  P (f i)
applyUpTo⁻ f (suc n) (px  _)   (s≤s z≤n)       = px
applyUpTo⁻ f (suc n) (_   pxs) (s≤s (s≤s i<n)) =
  applyUpTo⁻ (f  suc) n pxs (s≤s i<n)

------------------------------------------------------------------------
-- upTo

all-upTo :  n  All (_< n) (upTo n)
all-upTo n = applyUpTo⁺₁ id n id

------------------------------------------------------------------------
-- applyDownFrom

applyDownFrom⁺₁ :  f n  (∀ {i}  i < n  P (f i))  All P (applyDownFrom f n)
applyDownFrom⁺₁ f zero    Pf = []
applyDownFrom⁺₁ f (suc n) Pf = Pf ≤-refl  applyDownFrom⁺₁ f n (Pf  ≤-step)

applyDownFrom⁺₂ :  f n  (∀ i  P (f i))  All P (applyDownFrom f n)
applyDownFrom⁺₂ f n Pf = applyDownFrom⁺₁ f n  _  Pf _)

------------------------------------------------------------------------
-- tabulate

tabulate⁺ :  {n} {f : Fin n  A} 
            (∀ i  P (f i))  All P (tabulate f)
tabulate⁺ {n = zero}  Pf = []
tabulate⁺ {n = suc n} Pf = Pf fzero  tabulate⁺ (Pf  fsuc)

tabulate⁻ :  {n} {f : Fin n  A} 
            All P (tabulate f)  (∀ i  P (f i))
tabulate⁻ {n = suc n} (px  _) fzero    = px
tabulate⁻ {n = suc n} (_  pf) (fsuc i) = tabulate⁻ pf i

------------------------------------------------------------------------
-- remove

─⁺ :  (p : Any P xs)  All Q xs  All Q (xs Any.─ p)
─⁺ (here px) (_  qs) = qs
─⁺ (there p) (q  qs) = q  ─⁺ p qs

─⁻ :  (p : Any P xs)  Q (Any.lookup p)  All Q (xs Any.─ p)  All Q xs
─⁻ (here px) q qs        = q  qs
─⁻ (there p) q (q′  qs) = q′  ─⁻ p q qs

------------------------------------------------------------------------
-- filter

module _ (P? : Decidable P) where

  all-filter :  xs  All P (filter P? xs)
  all-filter []       = []
  all-filter (x  xs) with P? x
  ... |  true because [Px] = invert [Px]  all-filter xs
  ... | false because  _   = all-filter xs

  filter⁺ : All Q xs  All Q (filter P? xs)
  filter⁺ {xs = _}     [] = []
  filter⁺ {xs = x  _} (Qx  Qxs) with does (P? x)
  ... | false = filter⁺ Qxs
  ... | true  = Qx  filter⁺ Qxs

  filter⁻ : All Q (filter P? xs)  All Q (filter (¬?  P?) xs)  All Q xs
  filter⁻ {xs = []}           []          []                           = []
  filter⁻ {xs = x  xs}       all⁺        all⁻ with P? x  | ¬? (P? x)
  filter⁻ {xs = x  xs}       all⁺        all⁻  | yes  Px | yes  ¬Px = contradiction Px ¬Px
  filter⁻ {xs = x  xs} (qx  all⁺)       all⁻  | yes  Px | no  ¬¬Px = qx  filter⁻ all⁺ all⁻
  filter⁻ {xs = x  xs}       all⁺  (qx  all⁻) | no    _ | yes  ¬Px = qx  filter⁻ all⁺ all⁻
  filter⁻ {xs = x  xs}       all⁺        all⁻  | no  ¬Px | no  ¬¬Px = contradiction ¬Px ¬¬Px

------------------------------------------------------------------------
-- partition

module _ {P : A  Set p} (P? : Decidable P) where

  partition-All :  xs  (let ys , zs = partition P? xs) 
                  All P ys × All ( P) zs
  partition-All xs rewrite partition-defn P? xs =
    all-filter P? xs , all-filter (∁? P?) xs

------------------------------------------------------------------------
-- derun and deduplicate

module _ {R : A  A  Set q} (R? : B.Decidable R) where

  derun⁺ : All P xs  All P (derun R? xs)
  derun⁺ {xs = []}         []                 = []
  derun⁺ {xs = x  []}     (px  [])          = px  []
  derun⁺ {xs = x  y  xs} (px  all[P,y∷xs]) with does (R? x y)
  ... | false = px  derun⁺ all[P,y∷xs]
  ... | true  = derun⁺ all[P,y∷xs]

  deduplicate⁺ : All P xs  All P (deduplicate R? xs)
  deduplicate⁺ []               = []
  deduplicate⁺ (px  pxs) = px  filter⁺ (¬?  R? _) (deduplicate⁺ pxs)

  derun⁻ : P B.Respects (flip R)   xs  All P (derun R? xs)  All P xs
  derun⁻ {P = P} P-resp-R []       []          = []
  derun⁻ {P = P} P-resp-R (x  xs) all[P,x∷xs] = aux x xs all[P,x∷xs]
    where
    aux :  x xs  All P (derun R? (x  xs))  All P (x  xs)
    aux x []       (px  []) = px  []
    aux x (y  xs) all[P,x∷y∷xs] with R? x y
    aux x (y  xs) all[P,y∷xs]        | yes Rxy with aux y xs all[P,y∷xs]
    aux x (y  xs) all[P,y∷xs]        | yes Rxy | r@(py  _) = P-resp-R Rxy py  r
    aux x (y  xs) (px  all[P,y∷xs]) | no _ = px  aux y xs all[P,y∷xs]

  deduplicate⁻ : P B.Respects R   xs  All P (deduplicate R? xs)  All P xs
  deduplicate⁻ {P = P} resp []       [] = []
  deduplicate⁻ {P = P} resp (x  xs) (px  pxs!) =
    px  deduplicate⁻ resp xs (filter⁻ (¬?  R? x) pxs! (All.tabulate aux))
    where
    aux :  {z}  z  filter (¬?  ¬?  R? x) (deduplicate R? xs)  P z
    aux {z = z} z∈filter = resp (decidable-stable (R? x z)
      (Prod.proj₂ (∈-filter⁻ (¬?  ¬?  R? x) {z} {deduplicate R? xs} z∈filter))) px

------------------------------------------------------------------------
-- zipWith

zipWith⁺ :  (f : A  B  C)  Pointwise  x y  P (f x y)) xs ys 
           All P (zipWith f xs ys)
zipWith⁺ f []              = []
zipWith⁺ f (Pfxy  Pfxsys) = Pfxy  zipWith⁺ f Pfxsys

------------------------------------------------------------------------
-- Operations for constructing lists
------------------------------------------------------------------------
-- fromMaybe

fromMaybe⁺ :  {mx}  Maybe.All P mx  All P (fromMaybe mx)
fromMaybe⁺ (just px) = px  []
fromMaybe⁺ nothing   = []

fromMaybe⁻ :  mx  All P (fromMaybe mx)  Maybe.All P mx
fromMaybe⁻ (just x) (px  []) = just px
fromMaybe⁻ nothing  p         = nothing

------------------------------------------------------------------------
-- replicate

replicate⁺ :  n  P x  All P (replicate n x)
replicate⁺ zero    px = []
replicate⁺ (suc n) px = px  replicate⁺ n px

replicate⁻ :  {n}  All P (replicate (suc n) x)  P x
replicate⁻ (px  _) = px

------------------------------------------------------------------------
-- inits

inits⁺ : All P xs  All (All P) (inits xs)
inits⁺ []         = []  []
inits⁺ (px  pxs) = []  gmap (px ∷_) (inits⁺ pxs)

inits⁻ :  xs  All (All P) (inits xs)  All P xs
inits⁻ []               pxs                   = []
inits⁻ (x  [])         ([]  p[x]  [])      = p[x]
inits⁻ (x  xs@(_  _)) ([]  pxs@(p[x]  _)) =
  singleton⁻ p[x]  inits⁻ xs (All.map (drop⁺ 1) (map⁻ pxs))

------------------------------------------------------------------------
-- tails

tails⁺ : All P xs  All (All P) (tails xs)
tails⁺ []             = []  []
tails⁺ pxxs@(_  pxs) = pxxs  tails⁺ pxs

tails⁻ :  xs  All (All P) (tails xs)  All P xs
tails⁻ []       pxs        = []
tails⁻ (x  xs) (pxxs  _) = pxxs

------------------------------------------------------------------------
-- all

module _ (p : A  Bool) where

  all⁺ :  xs  T (all p xs)  All (T  p) xs
  all⁺ []       _     = []
  all⁺ (x  xs) px∷xs with Equivalence.to (T-∧ {p x}) ⟨$⟩ px∷xs
  ... | (px , pxs) = px  all⁺ xs pxs

  all⁻ : All (T  p) xs  T (all p xs)
  all⁻ []         = _
  all⁻ (px  pxs) = Equivalence.from T-∧ ⟨$⟩ (px , all⁻ pxs)

------------------------------------------------------------------------
-- All is anti-monotone.

anti-mono : xs  ys  All P ys  All P xs
anti-mono xs⊆ys pys = All.tabulate (lookup pys  xs⊆ys)

all-anti-mono :  (p : A  Bool)  xs  ys  T (all p ys)  T (all p xs)
all-anti-mono p xs⊆ys = all⁻ p  anti-mono xs⊆ys  all⁺ p _

------------------------------------------------------------------------
-- Interactions with pointwise equality
------------------------------------------------------------------------

module _ (S : Setoid c ) where

  open Setoid S
  open ListEq S

  respects : P Respects _≈_  (All P) Respects _≋_
  respects p≈ []            []         = []
  respects p≈ (x≈y  xs≈ys) (px  pxs) = p≈ x≈y px  respects p≈ xs≈ys pxs

------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.

-- Version 0.16

All-all = all⁻
{-# WARNING_ON_USAGE All-all
"Warning: All-all was deprecated in v0.16.
Please use all⁻ instead."
#-}
all-All = all⁺
{-# WARNING_ON_USAGE all-All
"Warning: all-All was deprecated in v0.16.
Please use all⁺ instead."
#-}
All-map = map⁺
{-# WARNING_ON_USAGE All-map
"Warning: All-map was deprecated in v0.16.
Please use map⁺ instead."
#-}
map-All = map⁻
{-# WARNING_ON_USAGE map-All
"Warning: map-All was deprecated in v0.16.
Please use map⁻ instead."
#-}

-- Version 1.0

filter⁺₁ = all-filter
{-# WARNING_ON_USAGE filter⁺₁
"Warning: filter⁺₁ was deprecated in v1.0.
Please use all-filter instead."
#-}
filter⁺₂ = filter⁺
{-# WARNING_ON_USAGE filter⁺₂
"Warning: filter⁺₂ was deprecated in v1.0.
Please use filter⁺ instead."
#-}

-- Version 1.3

Any¬→¬All = Any¬⇒¬All
{-# WARNING_ON_USAGE Any¬→¬All
"Warning: Any¬→¬All was deprecated in v1.3.
Please use Any¬⇒¬All instead."
#-}