Review: Clowns to the Left of Me, Jokers to the Right
Another week, another paper. This week it’s McBride’s Clowns to the Left of Me, Jokers to the Right (CJ). At a high level, CJ generalizes the results from The Derivative of a Regular Type is its Type of One-Hole Contexts, wondering about what happens to a zipper when we don’t require the elements on either side to have the same type. This turns out to be not just an idle curiosity; the technique can be used to automatically turn a catamorphism into a tail-recursive function. Why is THAT useful? It lets us run functional programs on stock hardware.
The paper begins by reminding us that all algebraic types can be built out of compositions of functors. Furthermore, any recursive ADT can be represented as the fix-point of its base functor. For example, rather than writing
data Expr = Val Int | Add Expr Expr
we can instead pull the recursive inlining of Expr
out into a type argument:
data ExprF a = ValF Int | AddF a a
and then can tie the knot:
newtype Fix f = Fix { unFix :: f (Fix f) }
type Expr ~= Fix ExprF
This is all standard bananas and barbed wires, machinery, so refer to that if you’d like a deeper presentation than I’ve provided here.
Rather than go through the paper’s presentation of this section, I will merely point out that GHC.Generics
witnesses the “all ADTs can be built out of functor composition,” and give ExprF
a Generic1
instance:
data ExprF a = ValF Int | AddF a a
deriving stock (Functor, Generic1)
Clowns and Jokers
The title of CJ is a throw-back to some boomer song, whose lyrics go
Clowns to the left of me! Jokers to the right! Here I am stuck in the middle with you.
while this is an apt idea for what’s going on in the paper, it’s also an awful mnemonic for those of us who don’t have strong associations with the song. My mnemonic is that “clowns” come sooner in a lexicographical ordering than “jokers” do. Likewise, work you’ve already done comes before work you haven’t yet done, which is really what CJ is about.
So here’s the core idea of CJ: we can “dissect” a traversal into work we’ve already done, and work we haven’t yet done. The work we’ve already done can have a different type than the stuff left to do. These dissections are a rather natural way of representing a suspended computation. Along with the dissection itself is the ability to make progress. A dissection is spiritually a zipper with different types on either side, so we can make progress by transforming the focused element from “to-do” to “done”, and then focusing on the next element left undone.
CJ implements all of this as a typeclass with fundeps, but I prefer type families. And furthermore, since this is all generic anyway, why not implement it over GHC.Generics
? So the game here is thus to compute the type of the dissection for each of the Generic1
constructors.
Begin by building the associated type family. The dissected version of a functor is necessarily a bifunctor, since we want slots to store our clowns and our jokers:
class GDissectable p where
type GDissected p :: Type -> Type -> Type
As usual, we lift GDissectable
over M1
:
instance GDissectable f => GDissectable (M1 _1 _2 f) where
type GDissected (M1 _1 _2 f) = GDissected f
Because a dissection is a separation of the work we have and haven’t done yet, the cases for U1
and K1
are uninspired — there is no work to do, since they’re constants!
instance GDissectable U1 where
type GDissected U1 = K2 Void
instance GDissectable (K1 _1 a) where
type GDissected (K1 _1 a) = K2 Void
where K2
is the constant bifunctor:
data K2 a x y = K2 a
A different way to think about these dissections is as generalized zippers, which are the derivatives of their underlying types. Since U1
and K1
are constants, their derivatives are zero, which we have shown here via K2 Void
.
The Par1
generic constructor is used to encode usages of the functor’s type parameter. Under the view of the derivative, this is a linear use of the variable, and thus its derivative is one:
instance GDissectable Par1 where
type GDissected Par1 = K2 ()
We’re left with sums and products. Sums are easy enough: the dissection of the sum is the sum of the dissections.
instance (GDissectable f, GDissectable g) => GDissectable (f :+: g) where
type GDissected (f :+: g) = Sum2 (GDissected f) (GDissected g)
where
data Sum2 f g a b = L2 (f a b) | R2 (g a b)
Again, this aligns with our notion of the derivative, as well as with our intuition. If I want to suspend a coproduct computation half way, I either have an L1
I need to suspend, or I have an R1
. Nifty.
Finally we come to products:
instance (GDissectable f, GDissectable g) => GDissectable (f :*: g) where
type GDissected (f :*: g) =
Sum2 (Product2 (GDissected f) (Joker g))
Product2 (Clown f) (GDissected g)) (
where
data Clown p a b = Clown (p a)
data Joker p a b = Joker (p b)
data Product2 f g a b = Product2 (f a b) (g a b)
Let’s reason by intuition here first. I have both an f
and a g
stuck together. If I’d like to suspend a traversal through this thing, either I am suspended in the f
, with g
not yet touched (Joker g
), or I have made it through the f
entirely (Clown f
), and have suspended inside of g
.
Rather unsurprisingly (but also surprisingly, depending on your point of view!), this corresponds exactly to the quotient chain rule:
\[ \frac{d}{dx}[f(x)\cdot{}g(x)] = f(x)\cdot{}g'(x) + f'(x)\cdot{}g(x) \]
Curry-Howard strikes in the most interesting of places!
Getting Started
With our dissected types defined, it’s now time to put them to use. The paper jumbles a bunch of disparate pieces together, but I’m going to split them up for my personal understanding. The first thing we’d like to be able to do is to begin traversing a structure, which is to say, to split it into its first joker
and the resulting dissection.
We’ll make a helper structure:
data Suspension p k c j
= Done (p c)
| More j (k c j)
deriving Functor
A Suspension p k c j
is either a p
fully saturated with clowns (that is, we’ve finished traversing it), or a joker and more structure (k c j
) to be traversed. k
will always be GDissected p
, but for technical reasons, we’re going to need to keep it as a second type parameter.
Armed with Suspension
, we’re ready to add our first method to GDissectable
. gstart
takes a fully-saturated p j
and gives us back a suspension:
class GDissectable p where
type GDissected p :: Type -> Type -> Type
gstart :: p j -> Suspension p (GDissected p) c j
These instances are all pretty easy. Given a double natural transformation over Suspension
:
bihoist :: (forall x. p x -> p' x)
-> (forall a b. k a b -> k' a b)
-> Suspension p k c j
-> Suspension p' k' c j
More j kcj) = More j (g kcj)
bihoist _ g (Done pc) = Done (f pc) bihoist f _ (
Wingman can write U1
, K1
, Par1
, M1
and :+:
all for us:
= Done U1
gstart _
K1 a) = Done (K1 a)
gstart (
Par1 j) = More j (K2 ())
gstart (
M1 fj) = bihoist M1 id $ gstart fj
gstart (
L1 fj) = bihoist L1 L2 $ gstart fj
gstart (R1 gj) = bihoist R1 R2 $ gstart gj gstart (
For products, gstart
attempts to start the first element, and hoists its continuation if it got More
. Otherwise, it starts the second element. This is done with a couple of helper functions:
mindp :: GDissectable g
=> Suspension f (GDissected f) c j
-> g j
-> Suspension (f :*: g)
Sum2 (Product2 (GDissected f) (Joker g))
(Product2 (Clown f) (GDissected g)))
(
c jMore j pd) qj = More j $ L2 $ Product2 pd $ Joker qj
mindp (Done pc) qj = mindq pc (gstart qj)
mindp (
mindq :: f c
-> Suspension g (GDissected g) c j
-> Suspension (f :*: g)
Sum2 (Product2 (GDissected f) (Joker g))
(Product2 (Clown f) (GDissected g)))
(
c jMore j qd) = More j $ R2 $ Product2 (Clown pc) qd
mindq pc (Done qc) = Done (pc :*: qc) mindq pc (
and then
:*: qj) = mindp (gstart @f pj) qj gstart (pj
Making Progress
Getting started is nice, but it’s only the first step in the process. Once we have a More
suspension, how do we move the needle? Enter gproceed
, which takes a clown to fill the current hole and a suspension, and gives back a new suspension corresponding to the next joker.
class GDissectable p where
type GDissected p :: Type -> Type -> Type
gstart :: p j -> Suspension p (GDissected p) c j
gproceed :: c -> GDissected p c j -> Suspension p (GDissected p) c j
By pumping gproceed
, we can make our way through a suspension, transforming each joker into a clown. Eventually our suspension will be Done
, at which point we’ve traversed the entire data structure.
For the most part, gproceed
is also Wingman-easy:
-- U1
K2 v) = absurd v
gproceed _ (
-- K1
K2 v) = absurd v
gproceed _ (
= Done (Par1 c)
gproceed c _
= bihoist M1 id . gproceed fc
gproceed fc
L2 dis) = bihoist L1 L2 $ gproceed c dis
gproceed c (R2 dis) = bihoist R1 R2 $ gproceed c dis gproceed c (
Products are again a little tricky. If we’re still working on the left half, we want to proceed through it, unless we finish, in which case we want to start on the right half. When the right half finishes, we need to lift that success all the way through the product. Our helper functions mindp
and mindq
take care of this:
L2 (Product2 pd (Joker qj))) = mindp (gproceed @f c pd) qj
gproceed c (R2 (Product2 (Clown pc) qd)) = mindq pc (gproceed @g c qd) gproceed c (
Plugging Holes
McBride points out that if we forget the distinction between jokers and clowns, what we have is a genuine zipper. In that case, we can just plug the existing hole, and give back a fully saturated type. This is witnessed by the final method of GDissectable
, gplug
:
class GDissectable p where
type GDissected p :: Type -> Type -> Type
gstart :: p j -> Suspension p (GDissected p) c j
gproceed :: c -> GDissected p c j -> Suspension p (GDissected p) c j
gplug :: x -> GDissected p x x -> p x
Again, things are Wingman-easy. This time, we can even synthesize the product case for free:
-- U1
K2 vo) = absurd vo
gplug _ (
-- K1
K2 vo) = absurd vo
gplug _ (
= Par1 x
gplug x _
= M1 $ gplug x dis
gplug x dis
L2 dis) = L1 (gplug x dis)
gplug x (R2 dis) = R1 (gplug x dis)
gplug x (
L2 (Product2 f (Joker g))) = gplug x f :*: g
gplug x (R2 (Product2 (Clown f) g)) = f :*: gplug x g gplug x (
This sums up GDissectable
.
Nongeneric Representations
GDissectable
is great and all, but it would be nice to not need to deal with generic representations. This bit isn’t in the paper, but we can lift everything back into the land of real types by making a copy of GDissectable
:
class (Functor p, Bifunctor (Dissected p)) => Dissectable p where
type Dissected p :: Type -> Type -> Type
start :: p j -> Suspension p (Dissected p) c j
proceed :: c -> Dissected p c j -> Suspension p (Dissected p) c j
plug :: x -> Dissected p x x -> p x
and then a little machinery to do -XDerivingVia
:
newtype Generically p a = Generically { unGenerically :: p a }
deriving Functor
instance ( Generic1 p
Functor p
, Bifunctor (GDissected (Rep1 p))
, GDissectable (Rep1 p)
,
)=> Dissectable (Generically p) where
type Dissected (Generically p) = GDissected (Rep1 p)
Generically pj) =
start (Generically . to1) id $ gstart $ from1 pj
bihoist (= bihoist (Generically . to1) id . gproceed x
proceed x = Generically . to1 . gplug x plug x
With this out of the way, we can now get Dissectable
for free on ExprF
from above:
data ExprF a = ValF Int | AddF a a
deriving stock (Functor, Generic, Generic1, Show)
deriving Dissectable via (Generically ExprF)
Dissectable Fmap, Sequence and Catamorphisms
Given a Dissectable
constraint, we can write a version of fmap
that explicitly walks the traversal, transforming each element as it goes. Of course, this is silly, since we already have Functor
for any Dissectable
, but it’s a nice little sanity check:
tmap :: forall p a b. Dissectable p => (a -> b) -> p a -> p b
= pump . start
tmap fab where
pump :: Suspension p (Dissected p) b a -> p b
More a dis) = pump $ proceed (fab a) dis
pump (Done j) = j pump (
We start the dissection, and then pump its suspension until we’re done, applying fab
as we go.
Perhaps more interestingly, we can almost get Traversable
with this machinery:
tsequence :: forall p f a. (Dissectable p, Monad f) => p (f a) -> f (p a)
= pump . start
tsequence where
pump :: Suspension p (Dissected p) a (f a) -> f (p a)
More fa dis) = do
pump (<- fa
a $ proceed a dis
pump Done pa) = pure pa pump (
It’s not quite Traversable
, since it requires a Monad
instance instead of merely Applicative
. Why’s that? I don’t know, but MonoidMusician suggested it’s because applicatives don’t care about the order in which you sequence them, but this Dissectable
is very clearly an explicit ordering on the data dependencies in the container. Thanks MonoidMusician!
Finally, we can implement the stack-based, tail-recursive catamorphism that we’ve been promised all along. The idea is simple — we use the Dissected
type as our stack, pushing them on as we unfold the functor fixpoint, and resuming them as we finish calls.
tcata :: forall p v. Dissectable p => (p v -> v) -> Fix p -> v
= load' t []
tcata f t where
load' :: Fix p
-> [Dissected p v (Fix p)]
-> v
Fix t) stk = next (start t) stk
load' (
next :: Suspension p (Dissected p) v (Fix p)
-> [Dissected p v (Fix p)]
-> v
More p dis) stk = load' p (dis : stk)
next (Done p) stk = unload' (f p) stk
next (
unload' :: v
-> [Dissected p v (Fix p)]
-> v
= v
unload' v [] : stk) = next (proceed v pd) stk unload' v (pd
Compare this with the usual implementation of cata
:
cata :: Functor f => (f a -> a) -> Fix f -> a
Fix fc) = f $ fmap (cata f) fc cata f (
which just goes absolutely ham, expanding nodes and fmapping over them, destroying any chance at TCO.
The paper also has something to say about free monads, but it wasn’t able to hold my attention. It’s an application of this stuff, though in my opinion the approach is much more interesting than its applications. So we can pretend the paper is done here.
But that’s not all…
Functor Composition
Although the paper doesn’t present it, there should also be here another instance of GDissectable
for functor composition. Based on the composite chain rule, it should be:
instance (Dissectable f, GDissectable g) => GDissectable (f :.: g) where
type GDissected (f :.: g) =
Product2 (Compose2 (Dissected f) g)
GDissected g)
(
newtype Compose2 f g c j = Compose2 (f (g c) (g j))
GDissected
is clearly correct by the chain rule, but Compose2
isn’t as clear. We stick the clowns in the left side of the composite of f . g
, and the jokers on the right.
Intuitively, we’ve done the same trick here as the stack machine example. The first element of the Product2
in GDissected
keeps track of the context of the f
traversal, and the second element is the g
traversal we’re working our way through. Whenever the g
finishes, we can get a new g
by continuing the f
traversal!
It’s important to note that I didn’t actually reason this out—I just wrote the chain rule from calculus and fought with everything until it typechecked. Then I rewrote my examples that used :+:
and :*:
to instead compose over Either
and (,)
, and amazingly I got the same results! Proof by typechecker!
After a truly devoted amount of time, I managed to work out gstart
for composition as well.
Comp1 fg) =
gstart (case start @f $ fg of
More gj gd -> continue gj gd
Done f -> Done $ Comp1 f
where
continue :: g j
-> Dissected f (g c) (g j)
-> Suspension
:.: g)
(f Product2 (Compose2 (Dissected f) g) (GDissected g))
(
c j=
continue gj gd case gstart gj of
More j gd' ->
More j $ Product2 (Compose2 gd) gd'
Done g ->
case progress @f g gd of
More gj gd -> continue gj gd
Done fg -> Done $ Comp1 fg
The idea is that you start f
, which gives you a g
to start, and you need to keep starting g
until you find one that isn’t immediately done.
gproceed
is similar, except dual. If all goes well, we can just proceed down the g
we’re currently working on. The tricky part is now when we finish a g
node, we need to keep proceeding down f
nodes until we find one that admits a More
:
Product2 cfg@(Compose2 fg) gd) =
gproceed c (case gproceed @g c gd of
More j gd -> More j $ Product2 cfg gd
Done gc -> finish gc
where
-- finish
-- :: g c
-- -> Suspension
-- (f :.: g)
-- (Product2 (Compose2 (Dissected f) g) (GDissected g))
-- c j
=
finish gc case proceed @f gc fg of
More gj gd ->
case gstart gj of
More j gd' -> More j $ Product2 (Compose2 gd) gd'
Done gc -> finish gc
Done f -> Done $ Comp1 f
I’m particularly proud of this; not only did I get the type for GDissected
right on my first try, I was also capable of working through these methods, which probably took upwards of two hours.
GHC.Generics
isn’t so kind as to just let us test it, however. Due to some quirk of the representation, we need to add an instance for Rec1
, which is like K1
but for types that use the functor argument. We can give an instance of GDissectable
by transferring control back to Dissectable
:
instance (Generic1 f, Dissectable f) => GDissectable (Rec1 f) where
type GDissected (Rec1 f) = Dissected f
Rec1 f) = bihoist Rec1 id $ start f
gstart (= bihoist Rec1 id $ proceed c f
gproceed c f = Rec1 $ plug x gd gplug x gd
Now, a little work to be able to express AddF
as a composition, rather than a product:
data Pair a = Pair a a
deriving (Functor, Show, Generic1)
deriving Dissectable via (Generically Pair)
deriving via Generically (Either a) instance Dissectable (Either a)
and we can rewrite ExprF
as a composition of functors:
data ExprF' a = ExprF (Either Int (Pair a))
deriving stock (Functor, Generic, Generic1, Show)
deriving Dissectable via (Generically ExprF')
pattern ValF' :: Int -> ExprF' a
pattern ValF' a = ExprF (Left a)
pattern AddF' :: a -> a -> ExprF' a
pattern AddF' a b = ExprF (Right (Pair a b))
Everything typechecks, and tcata
gives us the same results for equivalent values over ExprF
and ExprF'
. As one final sanity check, we can compare the computer dissected types:
*> :kind! Dissected ExprF
Dissected ExprF :: * -> * -> *
= Sum2
(K2 Void)
(Sum2
(Product2
(K2 ())
(Joker Par1))
(Product2
(Clown Par1)
(K2 ())))
*> :kind! Dissected ExprF'
Dissected ExprF' :: * -> * -> *
= Product2
(Compose2 (Sum2 (K2 Void) (K2 ())) (Rec1 Pair))
(Sum2
(Product2
(K2 ())
(Joker Par1))
(Product2
(Clown Par1)
(K2 ())))
They’re not equal, but are they isomorphic? We should hope so! The first one is Sum2 0 x
, which is clearly isomorphic to x
. The second is harder:
Product (Compose2 (Sum2 (K2 Void) (K2 ())) (Rec1 Pair)) x
If that first argument to Product
is 1, then these two types are isomorphic. So let’s see:
Compose2 (Sum2 (K2 Void) (K2 ())) (Rec1 Pair)
= symbolic rewriting
Compose2 (0 + 1) (Rec1 Pair)
= 0 is an identity for +
Compose2 1 (Rec1 Pair)
= definition of Compose2
K2 () (Rec1 Pair c) (Rec1 Pair j)
= K2 () is still 1
1
Look at that, baby. Isomorphic types, that compute the same answer.
As usual, today’s code is available on Github.